Книга бытия первая часть 4
Проводящие пути зрительного анализатора
1 — Левая половина зрительного поля, 2 — Правая половина зрительного поля, 3 — Глаз, 4 — Сетчатка, 5 — Зрительные нервы, 6 — Глазодвигательный нерв, 7 — Хиазма, 8 — Зрительный тракт, 9 — Латеральное коленчатое тело, 10 — Верхние бугры четверохолмия, 11 — Неспецифический зрительный путь, 12 — Зрительная кора головного мозга.
Зри;тельная систе;ма — оптикобиологическая бинокулярная (стереоскопическая) система, эволюционно возникшая у животных и способная воспринимать электромагнитное излучение видимого спектра (света), создавая изображение, в виде ощущения (сенсо;рного чувства) положения предметов в пространстве. Зрительная система обеспечивает функцию зрения.
Зрительная система (зрительный анализатор) у млекопитающих включает следующие анатомические образования:
периферический парный орган зрения — глаз (с его воспринимающими свет фоторецепторами — палочками и колбочками сетчатки);
нервные структуры и образования ЦНС: зрительные нервы, хиазма, зрительный тракт, зрительные пути — II-я пара черепно-мозговых нервов, глазодвигательный нерв — III-я пара, блоковый нерв — IV-я пара и отводящий нерв — VI-я пара;
латеральное коленчатое тело промежуточного мозга (с подкорковыми зрительными центрами), передние бугры четверохолмия среднего мозга (первичные зрительные центры);
подкорковые (и стволовые) и корковые зрительные центры: латеральное коленчатое тело и подушки зрительного бугра, верхние холмики крыши среднего мозга (четверохолмия) и зрительная кора.
Нормальным раздражителем органа зрения является свет. Под влиянием света в палочках и колбочках (см. ниже) происходит распад зрительных пигментов (родопсина и йодопсина). Палочки функционируют при свете слабой интенсивности, в сумерках; зрительные ощущения, получаемые при этом, бесцветны. Колбочки функционируют днём и при ярком освещении; их функция определяет ощущение цветности.
У человека и многих других животных существует бинокулярное зрение, обеспечивающее объёмное изображение. У многих дневных животных существует цветовое зрение.
Глаза
У животных и человека органами зрения являются глаза. Высокоорганизованными (способными создавать изображения предметов и обеспечивать предметное зрение) глазами обладают, помимо позвоночных, головоногие моллюски и многие членистоногие, а также отдельные представители других типов животных — книдарий, кольчатых червей, плоских червей.[1] Фасеточные глаза насекомых имеют принципиально отличное строение по сравнению с камерными глазами позвоночных и головоногих, однако связаны с ними постепенными переходами сравнительно-морфологического ряда.
Существуют сходные по функции со зрением другие системы ориентации в пространстве, например, ультразвуковая эхолокация летучих мышей и китообразных, позволяющая им обнаруживать мельчайшие объекты, электролокация некоторых рыб и утконоса, тепловая локация гремучих змей.
Эволюция зрительной системы
Позвоночные
Глазные бокалы позвоночных формируются как выросты промежуточного мозга, а первичный центр обработки зрительной информации находится в среднем мозге.
Млекопитающие
Предполагается, что в течение мезозойского периода ранние млекопитающие занимали подчинённое по отношению к «царствующим рептилиям» (особенно динозаврам, преимущественно занимавшим экологические ниши крупных хищников и травоядных) положение, имели мелкие размеры и сумеречный образ жизни. В таких условиях зрение для ориентации в пространстве становится второстепенным по отношению к обонянию и слуху. Химические чувства, которые и сейчас остаются для нас эмоционально окрашенными, обслуживаются передним мозгом и лимбической системой. Предполагается, что передний мозг в этих условиях приобретает большее значение. Когда «царствующие» рептилии исчезли в конце мезозоя, более широкие эволюционные возможности открылись для «угнетённых» млекопитающих. Они заселили все возможные экологические ниши освободившегося мира, зрение для некоторых отрядов снова стало наиболее важным из всех чувств. Однако формирующиеся заново зрительные пути направились к наиболее важной части мозга — переднему мозгу, расширяющемуся и формирующему характерные для млекопитающих крупные полушария. Ретино-тектальный путь остается пережитком старого зрительного пути, а ретино-геникуло-стриарный путь быстро становится наиболее важным путём передачи зрительной информации в мозг.
Зрение млекопитающих
Мутация, некогда реализованная у одного из прапредков млекопитающих и закрепившаяся во всём классе, сократила число видов цветовых рецепторов колбочек до двух. Полагают, что предки млекопитающих — мелкие грызуны — вели ночной образ жизни и компенсировали эту потерю значительным развитием сумеречного зрения (с помощью рецепторов — палочек).
Позже, однако, у приматов (в том числе человека) другая мутация вызвала появление третьего типа колбочек — цветовых рецепторов. Это было вызвано расширением экологической ниши млекопитающих, переходом части видов к дневному образу жизни, в том числе на деревьях. Мутация была вызвана появлением изменённой копии гена, отвечающего за восприятие средней, зелёночувствительной области спектра. Она обеспечила лучшее распознавание объектов «дневного мира» — плодов, цветов, листьев.
Глаз человека состоит из глазного яблока и зрительного нерва с его оболочками. У человека и позвоночных имеется по два глаза, расположенных в глазных впадинах черепа.
Глаз человека
Стереоскопическое зрение
У многих видов, образ жизни которых требует хорошей оценки расстояния до объекта, глаза смотрят скорее вперёд, нежели в стороны. Так, у горных баранов, леопардов, обезьян обеспечивается лучшее стереоскопическое зрение, которое помогает оценивать расстояние перед прыжком. Человек также имеет хорошее стереоскопическое зрение (см. ниже, раздел Бинокулярное и стереоскопическое зрение).
Альтернативный механизм оценки расстояния до объекта реализован у некоторых птиц, глаза которых расположены по разным сторонам головы, а поле объёмного зрения невелико. Так, куры совершают постоянные колебательные движения головой, при этом изображение на сетчатке быстро смещается, обратно пропорционально расстоянию до объекта. Мозг обрабатывает сигнал, что позволяет поймать мелкую добычу клювом с высокой точностью.
Глаза каждого человека внешне кажутся идентичными, но всё же функционально несколько различны, поэтому выделяют ведущий и ведомый глаз. Определение ведущего глаза важно для охотников, видеооператоров и лиц других профессий. Если посмотреть через отверстие в непрозрачном экране (дырочка в листе бумаги на расстоянии 20—30 см) на отдалённый предмет, а затем, не смещая голову, поочередно закрыть правый и левый глаз, то для ведущего глаза изображение не сместится.
Физиология зрения человека
Из-за большого числа этапов процесса зрительного восприятия его отдельные характеристики рассматриваются с точки зрения разных наук — оптики, психологии, физиологии, химии.
Бинокулярное зрение у человека, как и у других млекопитающих, а также птиц и рыб, обеспечивается наличием двух глаз, информация от которых обрабатывается сначала раздельно и параллельно, а затем синтезируется в мозгу в зрительный образ. У далеких филогенетических предшественников человека глаза были расположены латерально, их зрительные поля не перекрывались и каждый глаз был связан только с противоположным полушарием мозга — контралатерально. В процессе эволюции у некоторых позвоночных, в том числе и у предков человека в связи с приобретением стереоскопического зрения, глаза переместились вперёд. Это привело к перекрытию левого и правого зрительных полей и к появлению новых ипсилатеральных связей: левый глаз — левое полушарие, правый глаз — правое. Таким образом появилась возможность иметь в одном месте зрительную информацию от левого и правого глаза, для их сопоставления и измерения глубины.
Ипсилатеральные связи эволюционно более молодые, чем контралатеральные. В ходе развития стереоскопичности зрения по мере перехода от животных с латерально направленными зрительными осями к животным с фронтальной ориентацией глаз доля ипси-волокон растёт. Большинство особенностей бинокулярного зрения человека обусловлено характеристиками нейронов и нейронных связей. Методами нейрофизиологии показано, что декодировать глубину изображения, заданную на сетчатках набором диспаратностей, начинают бинокулярные нейроны первичной зрительной коры. Было показано, что самое важное требование для осуществления стереоскопического зрения — это различия в образах на сетчатке двух глаз.
Благодаря тому, что поля зрения обоих глаз человека и высших приматов в значительной мере пересекаются, человек способен лучше, чем многие млекопитающие, определять внешний вид и расстояние (тут помогает также механизм аккомодации) до близких предметов в основном за счёт эффекта стереоскопичности зрения. Стереоскопический эффект сохраняется на дистанции приблизительно 0,1—100 м. У человека пространственно-зрительные способности и объёмное воображение тесно связаны со стереоскопией и ипси-связями.
Слуховая система Слуховая сенсорная система
Анатомия уха.
Наружное ухо:
1 — кость; 2 — слуховой канал; 3 — ушная раковина;
Среднее ухо:
4 — барабанная перепонка; 5 — Овальное окно; 6 — молоточек; 7 — наковальня; 8 — стремечко;
Внутреннее ухо:
9 — полукружные каналы; 10 — улитка; 11 — нервы; 12 — евстахиева труба.
Слуховая сенсорная система — сенсорная система, обеспечивающая кодирование акустических стимулов и обусловливающая способность животных ориентироваться в окружающей среде посредством оценки акустических раздражителей. Периферические отделы слуховой системы представлены органами слуха и лежащими во внутреннем ухе фонорецепторами. На основе формирования сенсорных систем (слуховой и зрительной) формируется назывательная (номинативная) функция речи — ребёнок ассоциирует предметы и их названия.
Слуховая сенсорная система человека.
Слуховая система является одной из важнейших дистантных сенсорных систем человека, так как она является средством межличностного общения. Акустические (звуковые) сигналы, представляющие собой колебания воздуха с разной частотой и силой, возбуждают слуховые рецепторы, которые находятся в улитке внутреннего уха. Эти рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга.
Наружное ухо.
Наружный слуховой проход проводит звуковые колебания к барабанной перепонке, которая отделяет наружное ухо от барабанной полости, или среднего уха. Она представляет собой тонкую (0,1 мм) перегородку и имеет форму направленной внутрь воронки. После того, как через наружный слуховой проход действуют звуковые колебания, перепонка начинает колебаться.
Среднее ухо.
В среднем ухе находятся три косточки: молоточек, наковальня и стремечко. Они последовательно передают колебания барабанной перепонки во внутреннее ухо. Рукоятка молоточка вплетена в барабанную перепонку, а другая его сторона соединена с наковальней. Сама наковальня передаёт колебания стремечку, которое передаёт колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. В среднем ухе расположены две мышцы: стременная (m. stapedius) и напрягающая барабанную перепонку (m. tensor tympani). Первая из них, фиксирует стремечко, ограничивая тем самым его движения, а вторая сокращается и усиливает натяжение барабанной перепонки. Сокращаясь примерно через 10 мс, эти мышцы автоматически предохраняют внутреннее ухо от перегрузок[1].
Строение улитки.
Во внутреннем ухе находится улитка, представляющая собой костный спиральный канал с диаметром у основания 0,04 мм, а на вершине — 0,5 мм. Костный канал разделен двумя перепонками: преддверной (вестибулярной) мембраной и основной мембраной. На вершине улитки обе эти мембраны соединяются. Верхний канал улитки сообщается с нижним каналом улитки через овальное отверстие улитки барабанной лестницей. Оба канала улитки заполнены перилимфой, которая напоминает по составу цереброспинальную жидкость. Между верхним и нижним каналами проходит средний — перепончатый канал, заполненный эндолимфой. Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат, который содержит рецепторные волосковые клетки, трансформирующие механические колебания в электрические потенциалы[1].
Расположение и структура рецепторных клеток спирального органа.
Расположеные на основной мембране внутренние и наружные рецепторные волосковые клетки отделенные друг от друга кортиевыми дугами. Внутренние волосковые клетки располагаются в один ряд, а наружные — в 3—4 ряда. Общее число этих клеток от 12 000 до 20 000. Один полюс удлинённой волосковой клетки фиксирован на основной мембране, а второй находится в полости перепончатого канала улитки .
Механизмы слуховой рецепции.
При действии звука основная мембрана начинает колебаться, а наиболее длинные волоски рецепторных клеток, наклоняясь, касаются покровной мембраны. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микрофиламент) и открытию от 1 до 5 ионных каналов в мембране рецепторных клеток. После чего через открытый канал в волосок начинает течь калиевый ионный ток. Деполяризация пресинаптического окончания волосковой клетки приводит к выходу в синаптическую щель нейромедиатора, который воздействует на постсинаптическую мембрану афферентного волокна и вызывает генерацию в нём возбуждающего постсинаптического потенциала, после чего в нервные центры генерируются импульсы. Рецепторные клетки связаны между собой в пучок тонкими поперечными нитями. При сгибании одного или нескольких более длинных волосков, они тянут за собой все остальные волоски. По этой причине открываются ионные каналы всех волосков и обеспечивается достаточная величина рецепторного потенциала .
Электрические явления в улитке.
При отведении электрических потенциалов от разных частей улитки обнаружено пять различных феноменов:
микрофонный потенциал улитки
суммационный потенциал
потенциалы слухового нерва
мембранный потенциал слуховой рецепторной клетки
потенциал эндолимфы
Первые три возникают под влиянием звуковых раздражений, а последние два не обусловлены действием звука. Если ввести в улитку электроды, а затем соединить их с динамиком и подействовать на ухо звуком, то динамик точно воспроизведет этот звук. Это явление называют микрофонным эффектом улитки. Регистрируемый электрический потенциал (кохлеарный микрофонный потенциал) генерируется на мембране волосковой клетки в результате деформации волосков. При воздействии сильным звуком большой частоты (высокие тона) происходит сдвиг исходной разности потенциалов (суммационный потенциал). Суммационный потенциал может быть положительным и отрицательным. В результате возбуждения рецепторов импульсные сигналы генерируются в волокнах слухового нерва .
Свидетельство о публикации №123070604040