Числа Фибоначчи

  Итальянский купец Леонардо из Пизы (1180-1240 г.), более известный под прозвищем Фибоначчи был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить. Жизнь и научная карьера Леонарда теснейшим образом связана с развитием европейской культуры и науки. В век Фибоначчи, Возраждение было еще далеко, однако, история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих 2, император с 1220 года "Священной Римской империи Германской Нации". Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства, поэтому к преподаванию в основанном им Неаполитанском университете, наряду с христианскими учеными, он привлек арабов и евреев.  Столь любимые его дедом рыцарские турниры, на которых сражающиеся калечили друг друга на потеху публике, Фридрих II совсем не признавал. Вместо этого он культивировал  гораздо менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами. На таких турнирах и заблистал талант Леонарда Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей.  Впоследствии Фибоначчи пользовался неизменным покровительством Фридриха II. Это покровительство стимулировало выпуск научных трактатов Фибоначчи:
обширнейшей "Книге абака", написанной в 1202 году, но дошедшей до нас во втором своем варианте, который относится к 1228 г.; "Практики геометрии"( 1220г.); "Книги квадратов"(1225г.). По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику чуть ли не до времен Декарта ( 17 в.). Наибольший интерес представляет сочинение "Книга абака". Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течении нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индийскими ("арабскими") цифрами. Числовая последовательность Фибоначчи имеет много интересных свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений. Одно из самых главных следствий этих свойств различных членов последовательности  определяются следующим образом:
1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют  (ФИ), и мы поговорим о нем подробнее немного позже.
2. При делении каждого числа на следующее за ним через одно получаем число 0.382; наоборот – соответственно 2.618.
3. Подбирая таким образом соотношения, получаем основной набор коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236. упомянем также 0.5 (1/2). Все они играют особую роль в природе, и в частности – в техническом анализе. Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи. Например, число 0.618 представляет собой постоянный коэффициент в так называемом золотом сечении , где любой отрезок делится таким образом, что соотношение между его меньшей и большей частью равно соотношению между большей частью и всем отрезком. Таким образом, число 0.618 известно еще как золотой коэффициент или золотая середина. Такого типа пропорцию можно встретить абсолютно везде . Золотой коэффициент используется природой для построения ее частей, начиная от больших и заканчивая малыми. Современная наука считает, что Вселенная развивается по так называемой золотой спирали , которая строится именно с помощью золотого коэффициента. Эта спираль в буквальном смысле не имеет конца и начала. Меньшие витки никогда не сходятся в одну и ту же точку, а большие неограниченно развиваются в пространстве. Самое важное заключается в том, что с помощью всех этих, в каком-то роде мистических, чисел, описываются разнородные процессы во Вселенной.


Рецензии
Добрый день, Ольга!

С большим интересом прочитал Вашу статью. Про числа Фибоначчи раньше знал - учили в институте, а вот почему Леонардо получил такое прозвище понял только сегодня. Спасибо Вам! Интересна также связь с Иртышом и Павлодаром. Иртыш видел много раз: в командировках ( Ханты-Мансийск) и в путешествиях по следам Достоевского ( Тобольск, Омск, Павлодар, Семипалатинск). Дважды был в Павлодаре проездом и один раз оставался ночевать в гостинице Алтын, что рядом с автовокзалом. Об этих воспоминаниях кратко описал в стихотворении "В Сибирь Достоевскую".
С удовольствием прочту другие Ваши математические и нематематические публикации.

С уважением,



Сергей Жогличев   07.02.2023 10:45     Заявить о нарушении
Здравствуйте,СЕРГЕЙ!Благодарю за интересный отзыв)С уважением,Ольга.

Ольга Захарова-Грибельная   07.02.2023 14:46   Заявить о нарушении