Хочу всё знать 1 часть 36

Хочу всё знать 1 часть 36

Заболевания, вызванные бактериальными или грибковыми патогенами, представляют значительную проблему и могут привести к потере 80% или более урожая риса.
Предыдущие исследования были сфокусированы на изменении кодирующей последовательности или вышерасположенных элементов последовательности ДНК гена. Эти вышерасположенные ДНК-элементы известны как промоторы и действуют как переключатели, которые включают или выключают проявление гена. Это первый этап синтеза гена в его белковый продукт, известный как транскрипция.
Прикрепляя промотор, который дает сигнал «on», к защитному гену, растение может обрести устойчивость к болезнетворным микроорганизмам. Чтобы дополнительно смягчить негативные последствия для урожайности от борьбы с болезнями группа исследователей добавила в ДНК растения новые элементы последовательности, которые называются открытыми рамками считывания (uORF). Эти элементы последовательности действуют на промежуточное звено гена или мессенджер (РНК, молекула, подобная ДНК), чтобы управлять превращением в конечный белковый продукт.

7.Стволовые клетки крови впервые выращены в текущем году в лабораторных условиях. Их синтезировали ученые Гарвардской медицинской школы и Кембриджского университета.
Ученые начали с алгоритма создания человеческих стволовых клеток, которые могут образовывать практически любой другой тип клетки тела. Затем команда искала химические вещества, которые могли бы побудить их стать стволовыми клетками крови. После изучения генов, участвующих в производстве крови, исследователи идентифицировали белки, которые контролируют эти гены и применяют их к стволовым клеткам.
Они проверили множество комбинаций белков и обнаружили пять, которые работали вместе, чтобы побудить стволовые клетки стать стволовыми клетками крови. Эксперимент, в котором синтезированные стволовые клетки крови помещали в мышей, показал, что синтезируются новые красные и белые клетки крови и тромбоциты.
Отдельная команда достигла такого же эффекта со стволовыми клетками, взятыми у взрослых мышей. Рафаэль Лис в Медицинском колледже Вайля Корнелла в Нью-Йорке и его коллеги начали с клеток, взятых из стенок легких у животных, исходя из идеи, что подобные клетки в эмбрионе в конечном итоге образуют первые стволовые клетки крови. Команда определила набор из четырех факторов, которые могли бы стимулировать эти стволовые клетки легких.
Лабораторные стволовые клетки еще не готовы для использования на людях, хотя все мыши были здоровыми во время экспериментов. Для людей существует риск того, что клетки могут мутировать и вызывать рак.

8. Шведские ученые создали хрящевую ткань путем печати стволовых клеток с использованием 3D-биопринтера. Стволовые клетки выжили.
Исследовательская группа смогла воздействовать на клетки, чтобы те размножались и дифференцировались для образования хондроцитов (хрящевые клетки) в печатной структуре.
Исследовательский проект ведется в сотрудничестве с группой исследователей Технологического университета Чалмерса, которые являются экспертами в области 3D-печати биологических материалов.
Команда использовала хрящевые клетки, собранные у пациентов, перенесших операцию на колене. Затем эти клетки обработали в лаборатории, где их заставили омолаживаться и возвращаться в стволовые клетки. Затем стволовые клетки разложили и инкапсулировали в состав нанофибриллированной целлюлозы и напечатали в структуру с использованием 3D-биопринтера. После печати стволовые клетки обрабатывали факторами роста, которые приводили к их правильной дифференциации, так что они образовывали хрящевую ткань. Основное понимание, полученное в ходе исследования, заключается в том, что для образования ткани необходимо использовать большое количество живых стволовых клеток.
Хрящ, образованный стволовыми клетками в трехмерной биотрансферной структуре, очень похож на человеческий хрящ. Опытные хирурги, которые исследовали искусственный хрящ, не видели никакой разницы, когда сравнивали биопринтерную ткань с реальным хрящом, и заявляли, что материал обладает свойствами, подобными природному хрящу пациента.

9. В феврале 2017 года ученым впервые удалось достичь двусторонней связи в интерфейсе «мозг-машина». Протезная конечность может частично восстановить утраченную моторную функцию, когда она непосредственно контролируется деятельностью мозга. Это стало возможным благодаря расшифровке активности нейронов, которая регистрируется электродами, а затем переводится в роботизированные движения.
Из-за отсутствия сенсорной обратной связи от искусственной конечности страдает точность данных.
Нейробиологи из Женевского университета (ЮНИГЕ) в Швейцарии изучили, смогут ли они передать это пропавшее ощущение назад в мозг, и предложили сделать это, стимулируя нейронную активность в коре. Они узнали, что создать искусственное ощущение нейропротезных движений невозможно, но при этом установили, что основной процесс обучения проходит очень быстро.
Успешные результаты, к сожалению, редки. Это связано с тем, что до сих пор интерфейсы мозговых машин управлялись, полагаясь в основном на визуальное восприятие, то есть глядя на роботизированную руку. Это означает, что прямой поток информации между мозгом и машиной является однонаправленным. Однако восприятие движения основано не только на видении, но и на проприоцепции — сознании того, где конечность находится в пространстве.
Первичный оптический интерфейс «мозг-машина» позволяет осуществлять двустороннюю связь с мозгом. Хотя роботизированная рука контролируется нейронной активностью, записанной с помощью оптического изображения (красный лазер), положение руки транслируется обратно в мозг через оптическую микростимуляцию (синий лазер).

10. В январе текущего года исследователи Национального института здоровья США (NIH) обнаружили молекулярные механизмы, которые могут влиять на поведение женщины в дни, предшествующие ее менструальному периоду.
Такое предменструальное дисфорическое расстройство (PMDD) поражает от 2-5% женщин репродуктивного возраста, тогда как менее серьезный предменструальный синдром (PMS) встречается гораздо чаще.
Ученые обнаружили, что PMDD представляет собой расстройство реакции клетки на эстроген и прогестерон, объясняет Питер Шмидт, управляющий директор Национального института психического здоровья NIH.
У женщин с PMDD экспериментальное отключение эстрогенов и прогестерона устраняло симптомы такого синдрома, в то время как экспериментальное возвращение этих гормонов вызывало повторное появление симптомов. Это подтверждает наличие биологической поведенческой чувствительности к гормонам, которые могут отражаться в молекулярных различиях, обнаруживаемых в их клетках.
«У нас теперь есть клеточные признаки аномальной передачи сигналов в клетках, полученных от женщин с PMDD, и правдоподобная биологическая причина их аномальной поведенческой чувствительности к эстрогену и прогестерону», — объясняет Шмидт.


Рецензии