Ксенобиология часть 110
Ксенобиология (от др.-греч. ;;;;; — «чужой, гость») — подраздел синтетической биологии, изучающий создание и управление биологическими устройствами и системами и описывающей биологические объекты, которые в настоящее время не знакомы науке и не встречается в природе.
1. Ксенобиология (от др.-греч. ;;;;; — чужой и -;;;;; — наука) — наука о чужеродных химических соединениях в живом организме и о вызываемых этими соединениями биологических реакциях.
2. Ксенобиология (от др.-греч. ;;;;; — чужой и -;;;;; — наука) — наука о формах жизни внеземного происхождения. Часто используется в качестве синонима астробиологии. Однако, в отличие от астробиологии, которая занимается поисками жизни на основе классических органических соединений, ксенобиология ищет более необычные формы жизни. Она включает в себя жизнь на неземлеподобных планетах, и на других небесных телах.
Физика Звезды смерти
Можно ли создать оружие, способное уничтожить целую планету, как в «Звездных войнах»? В теории ответ прост: да. Причем несколькими путями.
Для энергии, высвобождаемой при взрыве водородной бомбы, нет никаких физических ограничений. Вот как это происходит. (Подробное описание водородной бомбы даже сегодня правительство США относит к высшей категории секретности, но в общих чертах ее устройство достаточно хорошо известно.) Водородная бомба изготавливается в несколько этапов. Объединив нужное количество этапов в надлежащей последовательности, можно получить ядерную бомбу почти любой наперед заданной мощности.
Первый этап — стандартная бомба на реакции деления, или атомная бомба; в ней энергия урана-235 используется для генерации всплеска рентгеновского излучения, как это произошло в Хиросиме. За долю секунды до того, как взрыв атомной бомбы разнесет все в клочья, появляется расширяющаяся сфера мощного рентгеновского импульса. Это излучение обгоняет собственно взрыв (так как движется со скоростью света); его успевают сфокусировать заново и направить на контейнер с дейтеридом лития — активным веществом водородной бомбы. (Как именно это делается — все еще государственная тайна.) Рентгеновское излучение падает на дейтерид лития, заставляет его мгновенно сжаться и разогревает до миллионов градусов, вызывая тем самым второй взрыв, гораздо мощнее первого. Всплеск рентгеновского излучения, возникающий при этом втором взрыве, можно затем перефокусировать на вторую порцию дейтерида лития и вызвать третий взрыв. Вот принцип, в соответствии с которым можно поместить рядом множество контейнеров с дейтеридом лития и получить водородную бомбу невообразимой мощности. Так, самой мощной бомбой в истории человечества была двухступенчатая водородная бомба, которую взорвал в 1961 г. Советский Союз. Тогда произошел взрыв мощностью 50 млн т в тротиловом эквиваленте, хотя теоретически эта бомба способна была дать мощность более чем в 100 мегатонн тротила (что примерно в 5000 раз больше мощности бомбы, сброшенной на Хиросиму).
Однако для воспламенения целой планеты нужны совсем другие мощности. Для этого Звезде смерти пришлось бы запустить в космос тысячи таких рентгеновских лазеров, которые затем должны были бы выстрелить одновременно. (Для сравнения скажем, что в разгар холодной войны Соединенные Штаты и Советский Союз накопили примерно по 30 000 ядерных бомб.) Суммарной энергии такого громадного числа рентгеновских лазеров хватило бы, чтобы воспламенить поверхность планеты. Поэтому Галактическая империя будущего, отстоящая от нас на сотни тысяч лет, смогла бы, разумеется, создать такое оружие.
Для высокоразвитой цивилизации есть и другой путь: создать Звезду смерти, которая бы использовала энергию космического источника гамма-всплесков. От такой Звезды смерти исходила бы вспышка излучения, по мощности уступающая только Большому взрыву. Источники гамма-всплесков — это природное явление, они существуют в космосе; тем не менее, вполне представимо, что когда-нибудь развитая цивилизация сможет обуздать их громадную энергию. Не исключено, что если взять под контроль вращение звезды задолго до ее коллапса и рождения гиперновой, то можно будет направить «выстрел» источника гамма-всплесков в любую точку пространства.
Источники гамма-всплесков
Космические источники гамма-всплесков были впервые замечены в 1970-х гг. на запущенных американскими военными спутниках «Вела» (Vela), предназначенных для обнаружения «лишних вспышек» — свидетельств незаконного взрыва ядерной бомбы. Но вместо вспышек на поверхности Земли спутники зарегистрировали гигантские всплески излучения из космоса. Первоначально неожиданное открытие вызвало в Пентагоне настоящую панику: неужели Советы испытывают новое ядерное оружие в дальнем космосе? Позже было установлено, что всплески поступают равномерно со всех направлений небесной сферы; это означало, что на самом деле они приходят в галактику Млечный Путь извне . Но, если предположить действительно внегалактическое происхождение всплесков, то мощность их получится поистине астрономической — ведь они способны «осветить» всю видимую вселенную.
После развала Советского Союза в 1990 г. Пентагон неожиданно рассекретил громадное количество астрономических данных . Астрономы были поражены. Они внезапно поняли, что перед ними новое загадочное явление из тех, что заставляют время от времени переписывать учебники и справочники.
Продолжительность гамма-всплесков невелика и составляет от нескольких секунд до нескольких минут, поэтому для их обнаружения и анализа необходима тщательно организованная система датчиков. Сначала спутники регистрируют всплеск гамма-излучения и посылают на Землю точные координаты источника. Полученные координаты передаются на оптические или радиотелескопы, которые, в свою очередь, наводятся на указанную точку небесной сферы.
Хотя в настоящий момент о гамма-всплесках известно далеко не все, одна из теорий их происхождения гласит, что источники гамма-всплесков — «гиперновые» необычайной силы, оставляющие после себя массивные черные дыры. В этом случае получается, что источники гамма-всплесков — чудовищные черные дыры в стадии формирования.
Но черные дыры испускают два джета, два потока излучения, из южного полюса и из северного, как у вращающегося волчка. Излучение гамма-всплеска, который мы регистрируем, принадлежит, очевидно, одному из этих потоков — тому, который оказался направлен в сторону Земли. Если бы поток гамма-излучения от такого источника оказался бы направлен точно на Землю, а сам источник находился бы в нашей галактической окрестности (на расстоянии нескольких сотен световых лет от Земли), его мощности хватило бы, чтобы полностью уничтожить жизнь на нашей планете.
Сначала электромагнитный импульс, созданный рентгеновским излучением от источника гамма-всплесков, вывел бы из строя все электронное оборудование на Земле. Мощный луч рентгеновского и гамма-излучения нанес бы земной атмосфере непоправимый вред, уничтожив защитный озоновый слой. Затем поток гамма-излучения разогрел бы поверхность Земли, вызвав чудовищные огненные бури, которые со временем охватили бы всю планету. Может быть, источник гамма-всплесков и не взорвал бы планету, как показано в фильме «Звездные войны», но наверняка уничтожил бы на ней все живое, оставив после себя обугленную пустыню.
Можно предположить, что цивилизация, опередившая нас в развитии на сотни миллионов лет, научится направлять подобные черные дыры на желаемую цель. Этого можно добиться, если научиться управлять движением планет и нейтронных звезд и направлять их в умирающую звезду под точно рассчитанным углом непосредственно перед коллапсом. Относительно небольших усилий будет достаточно, чтобы отклонить ось вращения звезды и нацелить ее в нужном направлении. Тогда умирающая звезда превратится в самую большую лучевую пушку, какую только можно представить.
Подведем итог. Использование мощных лазеров для создания портативного или ручного лучевого оружия и световых мечей следует отнести к I классу невозможности — по всей видимости, это станет возможным в недалеком будущем или, скажем, в ближайшие сто лет. Но чрезвычайно сложная задача нацеливания вращающейся звезды перед взрывом и превращением ее в черную дыру, т. е. преобразование ее в Звезду смерти, должна рассматриваться как невозможность II класса — нечто, что не противоречит явно законам физики (ведь источники гамма-всплесков существуют в реальности), но может быть реализовано только далеко в будущем, через тысячи или даже миллионы лет.
Первое упоминание о телепортации в научно-фантастическом произведении мы находим в рассказе Эдварда Пейджа Митчелла «Человек без тела», опубликованном в 1877 г. В этом рассказе некий ученый открыл способ разобрать кошку на атомы я передать их по телеграфным проводам. К несчастью, в тот момент, когда ученый пытался телепортироваться сам, прекратилось электропитание. В результате успешно телепортировалась только его голова.
Сэр Артур Конан Дойл, создатель знаменитого Шерлока Холмса , был буквально очарован идеей телепортации. Написав большое количество детективных рассказов и романов про приключения Шерлока Холмса, он устал от своего героя и в конце концов прикончил его, заставив вместе с профессором Мориарти упасть в ущелье у Рейхенбахского водопада. Но возмущение читателей оказалось столь велико, что Дойлу пришлось воскресить сыщика. Оказавшись не в состоянии избавиться от Шерлока Холмса, Дойл вместо этого решил создать совершенно нового героя. Им стал профессор Челленджер, практически двойник Холмса. Оба героя обладали острым умом и наблюдательностью и любили разгадывать загадки. Но если Холмс раскрывал запутанные криминальные дела при помощи холодной дедуктивной логики, то профессор Челленджер исследовал темный мир спиритуализма и паранормальных явлений, включая и телепортацию.
В романе «Дезинтеграционная машина», опубликованном в 1927 г., профессор знакомится с изобретателем машины, способной разобрать человека, а затем собрать его заново где-нибудь в другом месте. Но затем изобретатель хвастливо заявляет, что в дурных руках его машина может по нажатию кнопки уничтожать целые города с миллионами жителей. Профессор Челленджер в ужасе. Роман заканчивается тем, что он при помощи машины разбирает изобретателя и покидает лабораторию, «позабыв» собрать его заново.
Немного позже телепортацию открыл для себя и Голливуд. Вышедший в 1958 г. фильм «Муха» наглядно демонстрирует, что может произойти, если процесс телепортации пойдет неправильно. Некий ученый успешно телепортирует себя в пределах комнаты, но по несчастной случайности его атомы перемешиваются с атомами мухи, случайно попавшей в телепортационную лабораторию. В результате ученый превращается в гротескное чудовище — получеловека, полумуху. (В 1986 г. на экраны вышел ремейк этого фильма с Джеффом Голдблюмом в главной роли.)
Сериал «Звездный путь» сделал телепортацию заметным явлением массовой культуры. Его создатель Джин Родденберри вынужден был ввести телепортацию в сюжет, поскольку бюджет студии Paramount не предусматривал дорогостоящих спецэффектов, связанных с имитацией старта и посадки ракетных кораблей на Земле и отдаленных планетах. Дешевле было просто передать экипаж «Энтерпрайза» к месту назначения по лучу.
За прошедшие десятилетия ученые успели высказать множество доводов в пользу того, что телепортация в принципе невозможна. Чтобы телепортировать человека, вы должны знать точное расположение каждого атома в живом теле — а это, вероятно, нарушило бы принцип неопределенности Гейзенберга (который утверждает, что невозможно одновременно знать точное положение и скорость электрона). Продюсеры «Звездного пути», склоняясь перед критиками, установили в телепортационной камере «компенсаторы Гейзенберга» — можно подумать, что законы квантовой физики можно было бы исправить при помощи какого бы то ни было дополнительного блока в устройстве телепорта! Но оказывается, создатели фильма вообще поторопились с введением «компенсаторов Гейзенберга». Возможно, ученые и критики прошлых лет все же ошибались.
Материал подготовлен на основе информации открытых источников.
Свидетельство о публикации №122043003054