Из разговоров с Ангелами 337

Из разговоров с Ангелами 337

МОДЕЛЬ ЭВОЛЮЦИИ ВСЕЛЕННОЙ

Известный американский астроном, астрофизик, да и просто большой популяризатор науки, за что огромное ему спасибо, Карл Саган (Carl Edward Sagan, 1934-1996 ) построил наглядную модель эволюции Вселенной, в которой космический год равен 15 млрд. земных лет, а 1 сек. – 500 годам; тогда в земных единицах времени эволюция представится так:
1. Большой взрыв 1 января 0 час.0 мин.
2. Образование галактик 10 января
3. Образование Солнечной системы 9 сентября
4. Образование Земли 14 сентября
5. Возникновение жизни на Земле 25 сентября
6. Океанский планктон 18 декабря
7. Первые рыбы 19 декабря
8. Первые динозавры 24 декабря
9. Первые млекопитающие 26 декабря
10. Первые птицы 27 декабря
11. Первые приматы 29 декабря
12. Первые гоминиды 30 декабря
13. Первые люди 31 декабря примерно в 22 час. 30 мин.
Удивительно простая и наглядная модель, верно? Кстати, советуем посмотреть документальный научно-популярный сериал, написанный Карлом Саганом, Энн Друян и Стивеном Сотером, в котором Саган выступил ведущим. Сериал состоит из тринадцати эпизодов, посвященных различным научным темам от происхождения жизни до места человечества во Вселенной. В дополнение к сериалу была выпущена книга «Космос» (1980).
РЕЛИКТОВОЕ ИЗЛУЧЕНИЕ
Согласно принятой сейчас теории горячей Вселенной, на первой стадии образования она представляла собой смесь вещества (элементарных частиц) и излучения (квантов электромагнитного поля), имеющую чрезвычайно высокую плотность и температуру. Кванты излучения тогда интенсивно взаимодействовали с заряженными частицами и образование сгустков вещества было невозможным: их разрушало давление фотонов.

Но в процессе расширения Вселенной температура вещества и излучения падала, и через миллион лет, когда она опустилась ниже 4000 К, протоны и электроны начали соединяться в атомы водорода. Электроны в этих атомах стали рассеивать фотоны значительно слабее, чем делали это, будучи свободными, и потому после образования водорода взаимодействие вещества и излучения прекратилось. Дальше они эволюционировали почти независимо: вещество под действием гравитационных сил собиралось в скопления, а излучение продолжало расширяться и остывать и дошло до нашего времени.
Это излучение, называемое реликтовым, равномерно заполняет Вселенную и имеет сейчас температуру 2,9 К. В 1964 году его обнаружили экспериментально, и теория горячей Вселенной была подтверждена на опыте.
Реликтовое излучение может многое рассказывать об истории Вселенной. Если в момент образования атомарного водорода плотность вещества в какой-то точке была больше средней, то там была выше средней и температура, а значит, энергия и частота излучения. Разница в энергии излучения из разных областей должна сохраниться до нынешнего дня.
Следовательно, сегодняшние неоднородности в распределении интенсивности реликтового излучения по небесной сфере несут информацию о неоднородности распределения вещества в далеком прошлом.
Многие считают, что именно такие первичные неоднородности распределения вещества обусловили образование галактик. Поэтому понятен интерес к исследованию анизотропии реликтового излучения (зависимости его энергии от направления). Помимо прочего, это исследование позволило бы определить скорость движения Солнечной системы относительно реликтового излучения. Ведь за счет эффекта Доплера частота квантов излучения, навстречу которым мы движемся, повышается, а частота квантов, движущихся нам вослед, падает. Поскольку энергия кванта пропорциональна его частоте, мощность излучения в направлении нашего движения будет больше, а в противоположном направлении — меньше средней.
Однако измерить анизотропию реликтового излучения достаточно сложно. Теоретические оценки говорят, что она не превышает сотых, а то и тысячных долей процента. Измерить такую малую величину мешает тепловое излучение Земли и ее атмосферы. Американские и итальянские радиоастрономы пытались проводить наблюдения с самолетов и высотных аэростатов, но достигнутая точность не удовлетворила исследователей.
РЕЛИКТОВОЕ ИЗЛУЧЕНИЕ
Советские ученые предложили провести наблюдения с борта искусственного спутника Земли. Выбор орбиты с очень высоким апогеем позволяет избавиться от помех со стороны не только Земли, но и Луны. Другое важное преимущество спутникового эксперимента — возможность длительного наблюдения. Как показывает опыт, при экспериментах на самолетах и аэростатах каждую минуту измерений нужно оплатить примерно 10 часами подготовки, а если ту же самую аппаратуру установить на спутнике, то ее можно использовать в принципе сколь угодно долго и значительно сократить тем самым общее время работ.
Советский эксперимент «Реликт» по измерению интенсивностей излучения из разных точек небесной сферы был осуществлен с помощью спутника «Прогноз-9». Регистрировал излучение созданный сотрудниками Института космических исследований АН СССР и установленный на спутнике уникальный радиотелескоп, который по своим возможностям превосходит все аналогичные современные устройства.
Это, по сути, настроенный на длину волны 8 миллиметров сверхчувствительный приемник с небольшими рупорными антеннами, обеспечивающими направленный прием. Длина волны — 8 миллиметров — выбрана не случайно: более коротковолновое излучение интенсивно поглощается межгалактической пылью, на более длинных волнах мешает шум от галактических источников синхротронного излучения. Была разработана схема осмотра небесной сферы радиотелескопом, которая свела до минимума возможные погрешности измерений.
Эксперимент завершен. Впервые сделан полный обзор небесной сферы с очень высокой чувствительностью в столь высокочастотном диапазоне. Предварительные результаты говорят, что анизотропия реликтового излучения — кроме анизотропии, вызванной Движением Солнечной системы, не превосходит 0,005 процента. Направление и скорость движения нашей Галактики относительно реликтового излучения согласуются с данными предыдущих экспериментов.
Вот один из самых интересных и непредвиденных результатов — интенсивность излучения Млечного Пути на волне 8 миллиметров оказалась значительно выше, чем считалось ранее. Это, по-видимому, связано с существованием гигантских областей ионизированного водорода, расположенных в спиральных рукавах нашей Галактики.
Такие области, заполненные плазмой (смесью протонов и электронов) и ослабляющие проходящее через них излучение, получили название Н 11-областей. Масса самых крупных из них превосходит массу Солнца в миллионы раз, а температура плазмы в таких областях около 10 тысяч К.
Замечена любопытная закономерность: плотность ионизированного водорода зависит от размеров той или иной области, а конкретно: чем меньше область, тем выше в ней плотность водорода. Объяснение этому факту пока не найдено. Некоторые из областей удалось отождествить с объектами, наблюдаемыми оптическими методами, другие видны лишь в радиодиапазоне. Установить причины их возникновения и найти разгадку необычной зависимости плотности плазмы от размеров области — задачи дальнейших исследований.
КОМЕТА ГАЛЛЕЯ
Комета Галлея — яркая короткопериодическая комета, движется по эллиптической орбите и возвращается к Солнцу каждые 75-76 лет. Является для ученых объектом № 1 для научных экспедиций космических аппаратов. С кометой Галлея связано экспериментальное подтверждение истинности закона всемирного тяготения.
В первую четверть века космических исследований была проведена своего рода рекогносцировка внутри Солнечной системы. Главное внимание при этом обращалось на крупные тела — планеты и их большие спутники: были осуществлены встречи, посещения или облет с помощью космических аппаратов всех планет земной группы вплоть до Меркурия, а также двух планет-гигантов — Юпитера и Сатурна с системой их спутников.
Затем интересы исследователей обратились и к совершенно другому классу объектов солнечной системы — к малым телам (кометам и астероидам). Дело в том, что из-за малой массы комет и их удаленности от Солнца они могли на длительное время законсервировать в себе «первозданное» вещество исходной газопылевой туманности, из которой образовалась солнечная система, и тем самым сохранить очень важную информацию о начальной стадии ее формирования.
Наибольший интерес представляет комета Галлея. Эта комета не случайно выделена учеными среди остальных комет как объект № 1 для научных экспедиций космических аппаратов. С ней связано экспериментальное подтверждение истинности закона, всемирного тяготения. В рукописных источниках более чем двухтысячелетней давности встречается упоминание о ней…
ЗАКЛЯТЬЕ ПРОТИВ ГАЛЛЕИ
Весной 1910 года, особенно в мае, газеты были полны тревожных сообщений. 19 мая ожидался «конец света». Будто бы комета Галлея своим хвостом расколет Землю или, в крайнем случае, отравит земную атмосферу ядовитым газом, и земной род прекратит свое существование.
Причина страхов — сообщения астрономов. Они вычислили, что 19 мая 1910 года ядро кометы Галлея должно пройти между Солнцем и Землей на расстоянии всего 23 миллионов километров от Земли и накрыть нашу планету в течение нескольких часов своим великолепным хвостом, который весной, в апреле уже украшал небо юга России и Кавказа. Астрономы знали, что ничего страшного в этом нет. Земля уже проходила через кометный хвост в 1861 году, и ничего особенного не случилось: кометные хвосты чрезвычайно разрежены. Но совсем иначе отнеслась к этому сообщению широкая публика.
В «Русских ведомостях» от 3 апреля 1910 года была перепечатана заметка, опубликованная в одном из мартовских номеров газеты «Голос Самары». В ней рассказывалось, как на площади города какой-то монах бойко торговал листками следующего содержания:
«Заклятье против встречи с Галлеей.
Ты, черт, сатана, Вельзевул преисподний! Не притворяйся звездой небесной! Не обмануть тебе православных, не спрятать хвостища Богомерзкого, ибо нет хвоста у звезд Господних!
Провались ты в тартарары, в пещь огненную, в кладезь губительную!»
В то же время в Москве правительство запретило чтение лекций астрономом Баевым, посвященных кометам, в том числе и комете Галлея.
По мере приближения 19 мая страсти накалялись. Газеты публиковали телеграфные сообщения из разных стран:
«Тегеран, 17 мая. Четверга персы ожидают с ужасом. Расклеены объявления, в которых духовенство призывает правоверных молиться и поститься. Многими вырыты глубокие ямы, в которых они собираются спрятаться в четверг от небесного гнева».
«Вена, 18 мая. Среди населения, в особенности в провинции, паника. Многие запасаются кислородом. Были-случаи самоубийств от страха».
«Париж, 19 мая. В течение вчерашнего дня в парижских церквах духовенство не успевало исповедовать всех желающих».
В те дни с полной серьезностью обсуждался придуманный кем-то из астрономов анекдот, будто бы в хвосте кометы опасен не циан, а закись азота — «веселящий газ», от которого все начнут прыгать и хохотать, пока не умрут от потери сил.
Вспоминали стихотворение Беранже:
Бог шлет на нас ужасную комету,
Мы участи своей не избежим;
Я чувствую, конец приходит свету;
Все компасы исчезнут вместе с ним.
С пирушки прочь, вы, пившие без меры,
Немногим был по вкусу этот пир, —
На исповедь скорее, лицемеры!
Довольно с нас, состарился наш мир…
Наступило 19 мая 1910 года. Проходили часы, но ничего сверхъестественного не происходило. Все шло своим чередом. Никаких грозных вселенских событий. Земля легко, словно пуля (а наша планета мчится по своей орбите со скоростью 30 километров в секунду), проткнула хвост кометы. Плотная земная атмосфера оказалась непроницаемой для разреженных кометных газов. Утром 20 мая многие со стыдом вспоминали о своих недавних страхах.
Кометам издавна не повезло. В них видели дурное предзнаменование, их веками осыпали бранью. Велик был страх перед силами небесными. А вид яркой кометы на небе — зрелище впечатляющее: по одному блеску она может быть как Венера, или даже как Луна в полнолуние. Хвост кометы может простираться на полнеба.
В переводе с греческого «комета» означает — «волосатая звезда». И кометы часто изображались на картинах в виде отрубленных голов с развевающимися волосами. Такая художественная трактовка, конечно, не способствовала улучшению их репутации. Но даже в далекие времена находились люди, которые с юмором относились к всеобщему кометному предубеждению.
Когда в 79 году новой эры римский император Веспасиан тяжело заболел, на небе появилась комета. Заметив, что врачи с большой тревогой шепчутся о комете в его присутствии, больной Веспасиан сказал им: «Вы волнуетесь за меня напрасно. Эта волосатая звезда смотрит не на меня, она угрожает скорее царю парфянскому, потому что он с волосами, а я — лысый».
Из всех комет, а их зарегистрировано около тысячи, комета Галлея, пожалуй, самая знаменитая. Она принадлежит к так называемым периодическим кометам, которые движутся по замкнутым эллиптическим орбитам, в фокусе которых находится Солнце. Поэтому такие кометы время от времени возвращаются к Солнцу, и мы имеем возможность их наблюдать. Правда, их не так уж много: чуть более семидесяти. Самый большой период у кометы Борелли — она возвращается к Солнцу один раз в 493 года. А самый короткий период у кометы Энке — 3,3 года. Комета Галлея проходит через перигелий — точку орбиты, в которой комета максимально приближается к Солнцу — в среднем раз в 75,5 года.
В августе 1682 года ее наблюдал двадцатишестилетний англичанин Эдмунд Галлей — неутомимый труженик-астроном и мужественный моряк. Впоследствии выяснилось, что эту комету уже не раз видели земляне. Но вошла она в историю как комета Галлея. И вот почему.
По тогдашним воззрениям считалось, что кометы проникают в солнечную систему из межзвездного пространства и после недолгого пребывания в ней навсегда покидают Солнце. А это значит, что кометы движутся либо по параболе, либо по гиперболе. Галлей впервые вычислил траекторию кометы 1682 года и предсказал ее появление в 1758 году. Этим прогнозом ученый хотел подтвердить закон всемирного тяготения, в правильности которого в ту пору еще не были уверены.
Для этого ученому пришлось проделать огромную вычислительную работу. Трудности усугублялись еще и характером кометных орбит. Дело в том, что гиперболы, параболы и эллипсы, по которым могут двигаться кометы, — кривые одного семейства и при малейшей неточности легко превращаются друг в друга. А это значит, можно прийти к неправильному выводу. Ведь если орбита эллиптическая, то комета возвратится, а если параболическая, то нет. Тем не менее в 1705 году Галлей сумел преодолеть вычислительные трудности и определил орбиты двух десятков комет, основываясь на результатах их наблюдений. Среди кометных орбит, полученных Галлеем, три оказались удивительно похожими. Первая из комет наблюдалась в 1531 году, вторую видели в 1607 году, третью же наблюдал сам Галлей в 1682 году.
“Я вполне склонен допустить, — пишет Галлей по этому поводу, — что комета 1531 года, наблюденная Апианом, та же, что и комета 1607 года, описанная Кеплером и Лонгомонтаном, и, наконец, та же самая, которую я открыл и тщательно наблюдал в 1682 году. Элементы всех трех появлений одни и те же, и если замечается в чем разница, то только в периоде обращения, что неудивительно, так как она может быть приписана различным физическим причинам.
Допуская возможность изменений в периоде обращения, мне кажется, что комета, мною открытая, была наблюдаема и в 1456 году; ее видели летом; она двигалась в обратном направлении и прошла между Землей и Солнцем приблизительно таким же образом, как и в последний раз. И хотя в этот раз мы не имеем точных наблюдений, но я полагаю, что, сравнивая путь и время обращения, можно не сомневаться в том, что комета 1682 года та же самая, которая появлялась в 1531 и 1607 годах.
Вследствие этого я могу предсказать с достаточной точностью ее ближайшее появление в 1758 году; если это предсказание осуществится и комета действительно появится, то, по моему мнению, не должно более оставаться ни малейшего сомнения в том, что и другие кометы могут появиться вторично таким же образом”.


Рецензии