Б. О кольцах Евклида, формула Эйлера-Ферма

Б. О  КОЛЬЦАХ  ЕВКЛИДА,  ФОРМУЛА  ЭЙЛЕРА-ФЕРМА,  правила расчёта             массивов Евклида

Как видим, расчёт колец не так прост, этот расчёт относится к высшей алгебре. НОД является разным, от минимального до максимального и наоборот. Для соединения же лет и катренов, я взяла линейное представление НОД с домножением на число. Эти простые примеры объясняют ситуации, что встретится при переборе, главное, не выходить за рамки формул.
I.Хочется добавить конкретнее о массивах Евклида. Здесь надо использовать некоторые более сложные понятия абстрактной алгебры и теории идеалов. Общая алгебра удобна тем, что позволяет рассматривать отношения между функциями (между формулами), например, сложение, вычитание, деление, умножение, в том числе и между идеалами.
Здесь я хотела разграничить понятие колец и полей.
Правила для колец, общее:
1) Кольца являются одновременно и кольцом, и полем, так как сохраняется целостность кольца и имеются делители нуля. Если делителей нуля нет – это кольцо.
a=bq, qЄR,  a;0 Vb=0   или a=0 Vb;0, a;b=0 – такая функция имеет делитель нуля, но всё равно является кольцом.
Если же кольцо не имеет делителя нуля, то оно называется целостным, является полем, aVb=0.

Если в кольце  a;0Vb;0, но a;b=0, то есть делитель нуля есть.
Поле имеет делитель нуля каким бы он ни был.?????
Обычно целостное кольцо называет Евклидовым.
Кольцо факториально, если а=р1;р2;р3

2) Это, если смотреть на цифры. Если же рассматривать с точки зрения модульной математики, то есть случаи, когда кольцо полем не является.
Кольцо классов вычетов Zm является полем, только когда |m| – простое число.

В нашем случае в коде Ностра мы имеем дело с полем чисел, так как делителей нуля нет, даже если кольцо a=bq или a=bq+r, но НОД не равен 0, это абелевы группы относительно сложения и умножения. Должен сохраняться гомоморфизм колец относительно сложения и умножения.
3) Идеалы кольца, область  b;q: n и nZ. Простое строение кольца с НОД.

4) Есть 2 способа расчёта алгоритма: по модульной математике и через формулы Эйлера и Ферма, можно вместе.

Удобство расчёта есть ещё и то, что цифры все можно выразить в двоичном коде через 1 и 0, соответственно и организовать перебор по этим преобразованным цифрам.


II.Распределение целых чисел в коде по годам.

Что же мы будем подставлять в массивы. Приходится повторять, так как файлы разрозненные. Во-первых, массив задан на числах завещания, нужно выбрать множества на сумму 288, 300, 353 или 1001, сами цифры тоже меняются за счёт прибавки вставок, полученных из календаря Ностра. Эти числа прибавляют b или делитель, он же mod. Биноминальные коэффициенты меняют r, при этом надо подобрать нужную тройку Пифагора, кроме того, отсчёт коэффициентов может идти от начала, а может от конца, то есть от убывающей степени 2. Годы и даты считаются отдельной формулой. Вот и все, дальше дело техники. Следует помнить, что модульная математики строится вся на равенствах, примеры расчёта я приведу ниже. Возможны варианты расчёта, например, r может менять остатки только в датах, а не остатки при расчёте по годам, всё это требует простейшего согласования с формулами. Также вариант, r может меняться в остатках по датам сразу за счёт подстановки чисел Гораполлона, но это на мой взгляд не очень удобно, так как вторая половина чисел Гораполлона ведь отходит в массиву ряда идентификации или к шифру. Как видим, вставки не только неотъемлемая часть «вечного» календаря, но и без них не получить правильный перебор всех наших массивом по годам. Также следует учитывать, что даты и годы могут быть не отдельным расчётом, а эквивалентными друг другу и решаться исходя из этого факта, то есть общих делителей [(a+b),(a-b)],  НОД (b,r1);НОД (r1,r2), но мне это представляется несколько сложным, ведь Ностр не знал модульной математики. Ниже я покажу, как комбинаторика связана с формулой Эйлера.


III.   Коротко, как считать. Касается перебора и лет, и соединения шифра с годами.
Нужны будут не только нижеприведённые формулы, но и сравнения. Сравнения бывают сами по себе и система сравнений. Система сравнений будет использоваться в соединении лет и шифра. Нужна ли она для расчёта лет;даты, не знаю, надо подбирать расчёт. Теорию сравнений привожу, все эти формулы или почти все нам понадобятся.
Формулы модульной математики очень занимательны и в целом понятны даже мне.

СИСТЕМА ЛИНЕЙНЫХ СРАВНЕНИЙ бывает по модулю и по остаткам, принципы расчёта.
Аа) Система сравнений по модулю имеет следующие варианты. Модули взаимно просты, например, mod(3,7), mod(22,31). В этом случае использовать нужно КТО(китайская теорема об остатках). Имеется
б) Модули равны: mod(3,3). Тогда a1;a2;b1;b2(modm), a1+a2;b1+b2(modm) и т.д..
в) Модули разные: mod(3,9). В этом случае надо искать общий НОД. В этом примере он равен 3. Число решений равно количеству множителей числа.
Бб) Система сравнений по остаткам.
Здесь всё также происходит, как в сравнении по модулю. Но сеть один нюанс, очень выгодный для нас, если два разных сравнения равны по остаткам, то они равны по модулю.
a;b(mod n) и c;d(modm) a+c;b+d(modm)

Бб) УРАВНЕНИЕ ОДНОГО ЛИНЕЙНОГО СРАВНЕНИЯ. Системы сравнений нет. Имеет следующие варианты.
а) a;b(modm)+f(modm), то a;(b+f)modm
б) Обладают симметричностью:  a;b(modm), то b;a(modm) .
в) а и mod взаимно просты НОД(a,mod)=1, тогда сравнение имеет одно решение и разлагается в цепную дробь ах;(bmodm)
г) а равно m, остаток обнуляется
д) a, mod имеют общий НОД(a,mod)=d, при этом b должен делиться на d, иначе сравнение неразрешимо. Число решений равно НОД классов решений. Поэтому от одного кольцо можно получить несколько чисел (катренов).
е) ac;bc(modm), если с взаимно просто с m, то a;b(modm)
ж) ac;bc(modcm) имеют общий множитель «с», то a;b(modm)
з) a;b(modm) для а и b поступаем так, если (а-b)/modm, то а и b сравнимы по модулю. 
и)  a;b(modm), то и an;bn(modm)

IV. Формулы для расчёта:
1) Малая теорема Ферма: aр-1;1(mod p), при этом «а» не делится на простое «р», для любого а;1
2) если «р» простое, то ар;а(mod p)
3) для сравнений n степени (a+b)p;ap+bp(mod p) , например,  (3+4)2;9+16(mod 2)

Теорема Эйлера :
б)  Вторая формула Эйлера берётся для более сложных, бОльших цифр.
an;am(mod p), далее  an-m;1(mod p)  - для равных а=а

1)  aф(m);1(modm), а,m – любые взаимно простые числа НОД (a,m)=1, где ф(m) – функция Эйлера
m=р1n1;р2n2 ;р3n3;…;рnxn  - составное число
ф(m)= (p1n1- р1n1-1) ; ( р2n2 –р2n2-1) ;…;( рnxn –рnxn-1)
Пример: 360=23;32;51, ф(360)=(23-22) ; (32-31) ; (51-50)= 4;6;4=96
Поэтому: 4360;496  496;?mod300, НОД(4,300)=4   х=4х1  х1;1;495,  степень всё равно остаётся большая, поэтому, 495=?(mod300),   494=?(mod75), 75=4;18+3, 394;?mod75, 94=75+16, 316;?mod75, 315;3;?mod75, 3;0mod75 ,    , здесь можно и наоборот сделать, сначала сократить mod и одну 4, но можно это сделать и после, я сделала после, так как это мой личный пример, как хочу, так и решаю его. Можно прибавлять и вычитать «а» и степень числа также, приравнивая к модулю, сравнивать степени «p» взаимно простые с модулем.
Уравнение имеет 4 класса сравнений, так как НОД=4.

2) Может пригодиться:  a/p=a(p-1)/2mod p, a/p – символ Лежандра
Используется для уравнений второй степени, а мы имеем дело с квадратами в итоге, хотя по r идёт обнуление и возврат к началу. Именно поэтому Ностр показывает в письме Генриху 28,21 без 35.


Отдельно идёт теорема Ламе, которая используется для «длинного» разложения массива и определяет сложность вычислений.
 Для НОД(b,a), a>b>0, количество делений не превосходит умноженного (мЕньшей цифры) b на 5 в десятичном представлении. Например, НОД (17, a), 17 – 2 цифры имеет, число шагов не может быть больше 2;5=10.
Уменьшить число формул, свести к одной или к каким-либо «коэффициентам», которые назойливо втирают на сайтах, нельзя, ведь код Нострадамуса, это массивы Евклида. Кое какие полезные примеры, которые встретятся при переборе массива, я приведу ниже, надеюсь как пример они пригодятся.

V.  Примеры расчёта.
Пример1.  Кольцо a=bq+r, исходное кольцо 35;3(mod4) ,  например, прибавка идёт по остаткам+1 и из множества «денег» +11 к  a.  Тогда получается 46;4(mod4), но в этом случае 46 не эквивалентно своей правой стороне, так как 46/4 не делится с остатком 4,  46=4х+4 4х=42, при этом получается остаток 2, а сама  формула равносильна 42;2(mod4), такое решение будет правильным.

Пример 2. А что делать, если b>a, например, получилось от прибавления «денег» к b: 10;25(mod3)  10=3x+25  x;-5, поэтому 10;-5(mod3), даты будут уменьшаться, а нам такой расчёт в обратную сторону к каменному веку  не нужен. Итог: цифры должны быть положительные.
Всегда должно быть a>b при переборе или брать по модулю, вот что мы узнали из модульной математики. Поэтому берём 25;10(mod3), ответ (25-10)/3=5.

Пример 3.    Цифры будут большие и считать их сложнее, поэтому для них привожу некоторые примеры.
Вариант1: 586190mod300;0mod300+190mod300,  586190=1953;200+190 …
Вариант2: 586190mod300=117238;5mod300=5mod300  …
Вариант3: функция Эйлера для числа  586190=2,5,11,732=2,5,11,5329
;(586190)=(2-1)(11-1)(5-1)(732-73)=40;5256=210240

Вариант4: Это же число, выраженное через степени двойки: итого 99 степеней
Во всех случаях надо сводить к взаимно простым числам с модулем, а потом расправляться с оставшимися цифрами.

VI.     Здесь я обещала показать, что же общего у формул Эйлера-Ферма и    комбинаторики. Может пригодиться для соединения лет с шифром, так эту 3 часть кода я не закончила.
Например: правда, здесь 4 и 11 взаимно просты
4х=3mod11   C114=11!/4!(11-4)!=330  x=3(-1)10 ;1/11;330=90

А теперь подумайте: можно ли все 600 катренов одного лишь ключа, а цифры даны в днях, высчитать вручную, каждое колечко Евклида и не ошибиться, как это «авторы» кода высчитали это без программы. Да, Ностр считал вручную, но он считал один вариант, а нам ещё нужно подобрать множества, на которых массивы заданы, и также биноминальные коэффициенты.

Этот файл я могла бы и не делать, так как те, кто будет подставлять подготовленные цифры в формулы, и так это знают. Но это нужно мне, а также французской стороне; а также всем, кто хочет знать, как считать наших новых любимцев - массивы Евклида.
На этом подготовительный расчёт лет и 2 шифров (см другие файлы кода) закончены. А нас заждалась уже 3 часть кода: соединение лет и шифра друг с другом через массивы Евклида ряда идентификации (ряда широт), которую я сделала лишь частично. Таким образом, осталось примерно работы на 1-2 файла. Каждый ряд Ностра имеет у меня собственное имя, чтобы их можно было различать, а не говорить им: эй, ты, иди сюда!

Остаётся подставлять цифры в массивы Евклида. Биноминальные коэффициенты нужно подбирать, от начала или от конца, б.к. прибавляют остатки. Также каждый массив задан на множестве вычетов по наследникам 288,300,353,1001-1002, нужно подобрать «своё» множество к массиву Евклида. Также a=bx+r, по годам делитель прибавляют вычеты по наследникам + вставки по календарю.
Для дат (хроники) и для лет и дат(ключ) r прибавляют числа Гораполлона непосредственно при расчёте лет? Или после при соединении с шифром?
Или второй вариант: a=bx+r, по годам делитель прибавляют вычеты по наследникам. Для дат (хроники) и для лет и дат(ключ) r прибавляют числа Гораполлона непосредственно при расчёте лет? Или после при соединении с шифром? Также для дат делитель меняют вставки по календарю.
Биноминальные коэффициенты меняют безусловно годы.
Следует помнить, что массив ключа включает в себя и годы, и даты, в то время, как массивы хроник только годы, а даты идут отдельно, поэтому перебор немного другой.


Р.S. Наше время. Доказательство формулы xn +yn=zn  оказалось длительным. В 1630 году Ферма заметил, что сумма квадратов верна лишь для цифр p=4n+1. Если множитель числа p=4n+3, то это число не имеет суммы квадратов, это общеизвестно, это касается и самого числа, например, 7, 11. Эйлер доказал теорему для n=3, для n=5 доказали немецкий математик Дирихле и фр. Лежандр, для n=7 французский математик Ламе. Позже немецкий математик Куммер 1837 г. доказал формулу для всех простых степеней меньших 100, кроме 37, 67 или 97? и 59, цифры 59(второй шифр) и 37(отполовиненное число от остатков астрономического календаря) нам хорошо знакомы в коде. Вернусь к теореме, в общем виде теорема не была доказана. В 1987 году английский физик Уайлс доказал теорему Ферма полностью как частный случай доказанной в 1988г. гипотезы Таниямы. Всё говорит нам о том, что в XVI веке имелась какая-то школа математики с передовыми идеями, и Ностр был её часть. Саму же теорему Ферма не оставляют в покое и продолжают «доказывать», желая сократить слишком длинное доказательство до другого, более компактного. Что таит ещё в себе теорема Ферма? Совпадают ли квадратичные прибавляемые или прибавленные суммы по остаткам с характерными астрологическими аспектами? Ведь у нас по остаткам прибавляются биноминальные коэффициенты до получения x2 +y2=z и до x2 +y2=z2 , а раз есть б.к., то есть и таблица Паскаля. Ответ на вопрос, как это согласуется с астрологией, я думаю, скоро мы увидим.


Рецензии
Действительно изучив книги по математике можно и не то познать.
........Ваш труд просто героический в этом направлении!..........

Игорь Александрович Степанов-Зор   21.05.2022 18:23     Заявить о нарушении
Формула Ферма малая используется, она и в современном кодировании используется в RSA, зачем преподают студентам разные алгоритмы, лучше бы теорию сравнений дали и другие разделы математики, связанные с кодами.Но и таблица Паскаля тоже Ностром использовалась, она вообще не Паскаля, её сто раз уже открывали. Старалась,Игорь, третья часть код непосредственно немного отличается от расчёта календаря. Дома холодно, дождь сутки лил, отопление тоже рано отключили в середине апреля, а ведь Ю.Урал не Крым, в Уфе всё же немного теплее. Бабок на 2 недели хватает на еду, на 3 было до повышения цен, цены на 50%, некоторые в 2 раза, хотя часть снизилась на некоторые продукты, на ценный сахар везде стало 77руб., свёкла, пшеница и картошка хорошо растут у нас, они любят чернозём. Индексация нам не светит, так как ПФР никто пока не объединил и другие выдумки тоже на том же месте. Такое здание областного ПФР огромное, вечером месяц сидит на последнем этаже как на минарете, сколько же там дармоедов сидит. И газпром обл. рядом тоже как пирамида Хеопса,вот такие два треугольника из синего стекла. Зато через дорогу напротив маленькое зданьице СК области.

Наталья Прохорова   22.05.2022 10:11   Заявить о нарушении
На это произведение написаны 3 рецензии, здесь отображается последняя, остальные - в полном списке.