Что такое фотонная материя?
Михаил Лукин, — профессор Гарвардского университета и по совместительству глава Международного консультативного совета Российского квантового центра. Он — один из самых цитируемых физиков российского происхождения. Его группа занимается не только фундаментальными исследованиями в фотонике, но и ее технологическим применением. Причем не только в области квантовых коммуникаций или квантовых вычислений, но и в применении к медицине: летом этого года группа Лукина создала алмазные нанотермометры, с помощью которых можно селективно и контролируемо убивать раковые клетки. «Лента.ру» поговорила с ученым о том, как новое открытие способно приблизить появление полноценных квантовых компьютеров, легко ли фундаментальная физика превращается в медицинские стартапы и о том, что он делает для Сколково, работая в Бостоне.
«Лента.ру»: В вашей последней статье говорится о создании фотонной материи. Что это такое?
Михаил Лукин: Давайте я попробую объяснить на простом примере. Представьте два лазерных пучка, которые вы перекрещиваете друг с другом. Фотоны этих пучков никак не взаимодействуют, они проходят друг сквозь друга, никак друг на друга не влияя, как две волны на поверхности озера. Это происходит вследствие того, что индивидуальные кванты света, фотоны, — фундаментально не взаимодействующие частицы. Однако если те же лазерные пучки вы скрестите не в вакууме, а в некоей среде, например в стекле, ситуация поменяется. Свет разных пучков станет взаимодействовать: лучи будут друг друга немного отклонять или скорость в одном пучке будет меняться в зависимости от интенсивности другого.
Почему это происходит? Дело в том, что свет сам по себе меняет среду, в которой он распространяется. Обычно очень слабо, но меняет. Изменившаяся среда по-другому проводит электромагнитное излучение — и именно через среду происходит взаимодействие фотонов.
Все это довольно давно известно. Область физики, которая занимается подобными взаимодействиями, существует уже почти полвека и называется нелинейной оптикой. В нее, кстати говоря, большой вклад сделали советские ученые. Однако до сих пор никому не удавалось заставить взаимодействовать не лазерные лучи, а отдельные кванты света.
В принципе, теоретически над этим многие думали ранее. Лет 20-30 назад были теоретические предсказания касательно того, какую среду распространения света нужно сделать, чтобы заставить фотоны внутри нее взаимодействовать. Была предсказана возможность существования таких экзотических объектов, фотонных пар, — по существу, фотонных молекул. В этой статье в Nature, про которую вы говорите, мы описали, как нам, наконец, удалось такие пары получить. Их, собственно, и называют фотонной материей — из-за того, что они сильно напоминают молекулы, но состоят не из атомов, а из фотонов.
Здесь следует добавить, что изучение взаимодействующих фотонов интересно не только само по себе. Оно имеет прямое практическое применение в информационных технологиях, в коммуникациях. Дело вот в чем. С одной стороны, тот факт, что обычно фотоны не взаимодействуют, — это их большое преимущество как носителя информации. Но с другой стороны, если мы хотим как-то перерабатывать информацию, которая передается с помощью света, то необходимо делать какие-то переключатели, какие-то логические элементы. А для этого нужно, чтобы фотоны как-то вступали во взаимодействие друг с другом. Сейчас свет в основном используется только для передачи информации, а для манипуляции с ней его нужно переводить в какой-то электрический сигнал. Это неудобно, медленно и неэффективно. Поэтому, если нам удастся заставить фотоны взаимодействовать друг с другом, мы сможем создать полностью фотонные устройства, обрабатывающие информацию.
Как устроена среда, в которой существует фотонная материя?
В нашей установке она состоит из охлажденных атомов рубидия, образующих достаточно плотный атомный газ. В этой среде свет распространяется очень медленно. То есть по сравнению с вакуумом скорость света падает в любой среде, это понятно, но в данном случае фотоны почти останавливаются — их скорость составляет около ста метров в секунду. Метод такой «остановки света» мы опубликовали еще в 2001 году (Лента.ру писала об этой работе).
Распространяясь в такой среде, фотоны как бы тянут за собой шлейф атомных возбуждений. За счет этого, собственно, свет и замедляется. Но самое интересное заключается в том, что атомы в этой среде начинают настолько сильно друг с другом взаимодействовать, что эти взаимодействия переносятся на фотоны, и они, фотоны, как бы начинают притягиваться друг к другу. В результате, фотоны, во-первых, приобретают эффективную массу и, во-вторых, за счет взаимного притяжения формируют связное состояние, которое напоминает молекулу. Законы, описывающие поведение фотонов в такой среде, очень похожи на законы, описывающие поведение частиц с массой, массивных атомов.
Фотонная молекула, которую нам удалось получить, это только начало, потому что в принципе из них можно создавать и более сложные объекты. Прежде всего нас интересуют сейчас аналоги кристаллических структур, фотонные кристаллы.
Имеется в виду фотонная материя, содержащая не два фотона, а больше?
Не только больше, но и на регулярных интервалах. Чтобы получить такое состояние, фотоны должны отталкиваться, а не притягиваться. В принципе, мы знаем, как этого добиться, и я думаю, что небольшие кристаллы наверняка можно сделать в ближайшем будущем.
Полученные вами пары фотонов, насколько я понимаю, достаточно стабильны. То есть их, как и всякие фотоны, нельзя остановить, они должны двигаться в среде, но они относительно длительное время существуют в паре, не коллапсируют, не превращаются, скажем, в один фотон увеличенной энергии. При этом, как вы сказали, в среде между ними возникает только сила притяжения, без отталкивания. Почему так происходит?
Все дело в том, что это квантовая система. Вспомните атомную модель Бора, у которой в этом году столетний юбилей. Ведь в обычном атоме тоже есть положительно заряженное ядро, есть электрон и между ними нет никаких сил отталкивания, только притяжение. Тем не менее, электрон на ядро не падает, как мы знаем.
Происходит это из-за квантования энергии, которое позволяет электрону как бы и двигаться вокруг ядра и при этом не коллапсировать. Точно такая же история происходит с нашими фотонами. В принципе, между ними есть только сила притяжения, но из-за того, что это квантовая система, она не коллапсирует, она находится в стабильном состоянии. Ситуация очень похожа на ту, что имеет место в молекулах с двумя атомами. То есть название «фотонной материи» для этих пар частиц весьма оправданно, — аналогия здесь достаточно глубокая.
В этом же выпуске Nature, где появилась ваша статья, опубликована работа Фукухара, где подобный эффект спаривания был продемонстрирован не на фотонах, а на магнонах — виртуальных магнитных частицах.
Да, это сделала группа Эммануэля Блоха из института Макса Планка. Это действительно очень необычное совпадение, потому что системы, на которых мы работаем, совершенно разные, но эффекты, которые мы наблюдаем, удивительно похожи.
Группа Блоха работала с атомами, фиксированными в оптической ловушке. Это довольно известная система, которая при помощи нескольких лазеров позволяет создать оптическую решетку, в которой атомы сидят в потенциальных ямах, условно говоря, как яйца в коробке. В исходном состоянии все эти атомы имеют один спин, то есть их магнитная поляризация направлена в одну сторону. Воздействуя на эту среду светом, Блох и коллеги добились того, что пара атомов поменяла спин на противоположный, а затем эта инверсия начала волной распространяться вдоль решетки.
При этом тоже возникла пара связанных частиц, только в их случае магнонов, а не фотонов. То, что магноны могут существовать в связанном состоянии, было известно, в принципе, и раньше. Но группе Блоха впервые удалось проследить распространение этих связанных частиц в среде. Волновая функция такого связанного состояния частиц очень похожа на то, что мы увидели для фотонов. Оказывается, это такой достаточно универсальный эффект.
Мы с Эммануэлем недавно встретились на конференции. За завтраком, когда я показал ему свои данные, возникла довольно забавная ситуация: наши данные оказались настолько похожи при совершенно разных физических процессах, что оставалось только сказать «вау».
Да, но пары магнонов, в отличие от фотонной материи, гораздо менее удобны для применения в коммуникациях. Расскажите, пожалуйста, что с фотонной материей можно делать в практическом плане?
Прикладная цель нашей работы — создание фотонной логики. В системах, где отдельные фотоны могут друг с другом взаимодействовать, мы можем создавать, скажем, однофотонные переключатели или однофотонные транзисторы. Одна из конкретных задач заключается в том, чтобы подойти к созданию квантового повторителя — устройства, которое позволяет передать квантовую информацию, не разрушая ее квантовой природы.
Что такое квантовый повторитель? Вы, конечно, знаете о квантовой криптографии, в которой информация передается с помощью одиночных фотонов, находящихся в суперпозиции двух состояний. Теоретически, передача ключа с помощью одиночных фотонов является абсолютно надежной технологией шифрования, потому что любая попытка злоумышленника вмешаться в систему и перехватить сообщение будет заметна. Этим, собственно, квантовая криптография и интересна. Однако в любых каналах существуют потери, поэтому ныне существующая квантовая связь ограничивается тем расстоянием, на котором большая часть фотонов не теряется — это десятки, максимум — сотни километров.
В принципе, проблема потерь существует и в классической связи, но там она решается с помощью обычных повторителей, которые принимают сигнал, немножко «чистят» его, повторяют в усиленном виде и отправляют дальше по оптической сети. Для квантовой связи необходимы аналоги таких устройств. Но проблема в том, что если вы посылаете информацию, закодированную в одном фотоне, вы не можете его «усилить» (типичным примером является детекция фотона с неизвестной поляризацией — если базис при измерении будет не совпадать с базисом поляризации фотона, информация просто будет потеряна — прим. «Ленты.ру»).
Квантовый повторитель должен уметь две базовые вещи. Во-первых, он должен уметь сохранить квантовую информацию, которая передается с фотонами. Чтобы добиться этого, мы, собственно, и работали над тем, что называют «остановкой света». В этом, собственно, была практическая мотивация нашей работы — мы пытались остановить импульс, записав его информацию в атомное возбуждение.
Во-вторых, чтобы сделать этот повторитель, необходимо научиться делать логические переключатели для фотонов, фотонную логику. И те эксперименты, которые сейчас были опубликованы, они имеют прямое отношение к созданию такой логики для квантовых повторителей.
А кубитами в этом компьютере выступают фотонные пары?
Нет, кубитами являются отдельные фотоны. И логика будет построена на основе их соединения и разъединения в фотонные молекулы. Поскольку мы можем связать фотоны в пары, мы представляем, как создать переключатель, где, скажем, наличие одного фотона сможет остановить распространение другого. На этом уже можно строить вычислительную логику.
Конечно, здесь очень много работы предстоит. Чтобы создать переключатель, мы должны во много раз улучшить взаимодействие между фотонами. Но основной принцип мы уже показали, и он работает. Теперь можно думать в более практическом ключе. На самом деле, в независимом эксперименте мы уже намного улучшили даже то качество взаимодействия (перформанс), которое было получено в опубликованных экспериментах.
Мы надеемся, что квантовыми повторителями применение фотонной материи не ограничится. В будущем, на их основе можно будет создать полноценные квантовые компьютеры, выполняющие вычисления. Это пока очень дальний горизонт, потому что для этого необходимо создать сотни, может даже тысячи кубитов. А квантовый повторитель — наша текущая, вполне осязаемая, практическая цель.
Вы занимаетесь не только фотонной материей. В августе мы писали про то, как ваша группа придумала неожиданное применения для алмазов с азотными вакансиями. Обычно их используют в роли кубитов, но вы сделали из них термометры даже не клеток, а их отдельных частей. Откуда появилась такая идея?
Сейчас в роли носителей кубитов используют самые разные системы. Это могут быть, например, охлажденные сверхпроводящие резонаторы, отдельные ионы или охлажденные атомы в оптической ловушке. Или, в случае данной работы, электроны в так называемых NV-центрах. Физически NV-центр — это просто дырка в кристаллической решетке алмаза, существующая рядом с примесью — атомом азота. Примеси эти существуют и в обычных алмазах, но мы можем создавать их и искусственно с помощью облучения, например, атомами азота. Причем эти центры можно делать в очень маленьких частицах, нанокристаллах алмаза.
Электроны NV-центра, если он расположен близко к поверхности, очень чувствительны к внешней среде, к ее температуре и магнитному полю. От этих параметров зависит, грубо говоря, скорость их квантовой эволюции. С одной стороны, для квантовых компьютеров это проблема — состояние системы становится хрупким, его становится трудно в таком кубите сохранить. Но, с другой стороны, такие NV-центры можно использовать как крайне чувствительные сенсоры.
Уникальность их в том, что они могут быть очень маленькими, то есть мы можем измерять поля и температуру в очень маленьких объемах. Естественно, что мы попробовали использовать такие нанокристаллы для приложений, где микроскопический размер — это преимущество. Например, для спектроскопии сложных биомолекул при комнатной температуре или для измерения температуры отдельных частей клетки. В той статье мы изучали возможности применения алмазных NV-центров именно как микроскопических термометров.
Мы взяли алмазные нанокристаллы и ввели их в живые клетки вместе с микроскопическими нагревателями — в их роли выступили золотые наночастицы. Затем клетки локально облучали лазером, за счет чего происходило нагревание. При этом, наблюдая за флюоресценцией нанокристаллов, мы видели, как меняется температура. Причем очень точно — с ошибкой не больше 0,01 градусов. Теоретически, точность измерений можно было даже значительно увеличить. Мы потихонечку нагревали клетки в разных точках и могли, например, их контролируемо, селективно убить. За счет того, что мы точно знали, какая внутри нее в данный момент температура.
Такие нанокристаллы — это не только совершенно новый для биологов инструмент. Это еще и, потенциально, метод контролируемого уничтожения раковых клеток. И в этом смысле пример того, как совершенно фундаментальное исследование, такой «blue sky research», может приводить к разработке реальных приложений. Уже сейчас есть пара стартапов, которые пытаются эту методику коммерциализировать.
Свидетельство о публикации №116082900133